
Best Practices for
 Managing Software Intellectual Property

Executive Overview

Over the past ten years, new technologies like the

Internet and open source software have enabled

developers to fundamentally change the way they

create software. Increasingly, distributed teams are

collaborating to assemble software from reusable

components and their own proprietary code rather

than building applications entirely from scratch.

Spurred by ubiquitous connectivity, developers

today can easily tap into rich software resources

inside their own organizations

and from around the world.

They obtain software modules

and libraries – and even code

fragments – from enormous stores

of high-quality, re-useable software

components. Open source projects

are a major new source of re-usable

code, but so too are the growing

in-house software repositories, and

the increasing amounts of modular code from third-

parties such as outsourcers.

With such broad availability, developers now focus

on selecting the best available components for their

projects, and rapidly incorporating them into their

own intellectual property (IP) to deliver applications

that provide optimal functionality, performance, and

reliability.

The component-based development model is

fundamentally changing the software industry. It

enables organizations that develop software, either

for commercial sale or for in-house use, to accelerate

project timelines, improve software quality, and

reduce development costs. But if not managed

properly, the complexity inherent in this new world

of ‘mixed-IP’ can pose business and technical risks to

an organization.

This paper draws on the experiences of the Black

Duck Software team, our customers, and other

industry experts to propose new approaches to

managing intellectual property in this new world. It

describes a set of Best Practices that companies can

use to avoid the risks and gain the benefits of this

promising new approach to software development.

Component-based Development

A software application’s design,

implementation, and maintenance

require the investment of

precious development personnel,

resources, and time. Development

organizations have long understood

the virtues of building new

applications by re-using components

already built and tested. Indeed,

the evolution and rapid adoption of component-

based architectures has been driven in part by their

effectiveness in promoting economically-significant

re-use. This effectiveness has stimulated the creation

of commercial component libraries, which give

development teams the option of purchasing pre-

built components rather than acquiring the expertise

and/or expending the time required to independently

create them. In short, the approach can result in

faster, less-expensive, and more effective software

development.

It is therefore appropriate to consider components

as intellectual property assets, optimize their usage,

and protect their integrity. This applies equally to all

components, whether they are internally developed

or developed externally by a third party.

Component-based
development is
fundamentally
changing the
software industry…

1

A development team intent on exploiting an

externally developed commercial component does

not typically purchase ownership of that component.

Instead, they acquire a license to

use that component in a specified

manner – perhaps for only a certain

number of developers working

on a particular project, or with

a specified royalty paid for each

instance of a shipped product that

includes the component.

Thus business judgment is required to ensure that

the cost of licensing a commercial component is

more than offset by the benefits – the classic make

vs. buy tradeoff. Included in the cost analysis must

be the effort required to ensure compliance with

the license, e.g. limiting the component’s usage to

a specific project, or tracking shipments in order to

accurately calculate royalty payments.

The Open Source Impact

Over the past five years, a powerful new approach

to development – open source software – has

risen to prominence, dramatically increasing the

opportunity to re-use existing software. With today’s

powerful Internet search capabilities, developers

can readily locate potentially useful components

from among a wide array of re-usable software

components. Re-use can take many forms, including

bundling independent components, integrating

with or using libraries, and incorporating source

code or source code fragments. In some cases these

components can be modified as required to improve

functionality, quality, performance, or footprint.

In many organizations, a developer’s skill with

Google and SourceForge.net is as important as

his or her knowledge of software architecture and

implementation.

As with commercial components,

the ownership of externally

developed open source components

and fragments remains with their

authors. While most of these authors

allow the commercial use of their

software without initial payments

or royalties, many have chosen to

impose other constraints, such as

• Attribution

• Usage reporting

• Publication of modifications and improvements

• License replication

• Resulting software must be open sourc

Such constraints are imposed by means of licenses,

examples of which include

• the Apache Software License (ASL)

• the Common Public License (CPL)

• the GNU General Public License (GPL)

• the Mozilla Public License (MPL)

• the New BSD License

The Linux operating system, for example, is

licensed under the GPL. A more complete listing

of open source licenses is provided at http://

www.opensource.org/licenses.

Open Source License Compliance

Development teams that incorporate open source

components or fragments of open source components

in their projects must comply with the terms of the

Faster, less
expensive, and
more effective
software
development…

2

licenses associated with those components. This

can be challenging for several reasons including the

following.

• There is wide variation in the obligations

imposed by open source licenses, ranging from

the BSD license (which has few obligations) to

the GPL license (which has many).

• Some open source licenses are legally complex,

introducing constraints whose business

implications may not be obvious to a developer

choosing to re-use a component.

• The licenses of some commercial and open source

components are mutually incompatible.

• The origin of a particular source code fragment

may be difficult to determine, effectively

obscuring its license obligations.

• Discovering the need to comply with a license

late in a project’s lifecycle

can produce disagreeable

tradeoffs, e.g. publishing all of

the project’s source code vs.

increasing time-to-market by

months while a component is

replaced.

In addition to the legal obligations

imposed by licenses, developers who incorporate

open source components into an organization’s

projects may either be obligated by the terms of the

license or feel a moral obligation to give something

back to the community. The resulting actions may

result in the inadvertent dilution or loss of the

organization’s intellectual property (IP).

Management Alternatives

Organizations can react to the challenges of open

source software licenses in one of three ways.

Some organizations turn a blind eye, ignoring the

issue until a catalyzing event or crisis occurs. But

the resulting misfortunes – major code rewrites,

embarrassing negative publicity, delayed sales,

failed acquisitions – make this an increasingly

untenable approach. This is especially true in the

new environment of increased business transparency,

executive responsibility, and potential shareholder

lawsuits.

Other organizations take the Draconian approach of

banning all open source software re-use. This strategy

is flawed because it:

• Is difficult to enforce

• Decreases productivity and agility compared to

organizations that successfully re-use externally

developed components

• De-motivates development teams by requiring

them to apply scarce resources to wheel re-

invention rather than to moving

forward

Further, both of the above

approaches are ineffective because

they fail to recognize the reality that

open source and component reuse

are here to stay.

The third and recommended alternative is to

encourage the re-use of both internally developed and

externally developed (commercial and open source)

components, while establishing controls at critical

points in the project lifecycle, for example:

• when components are first added to a project

• when internally developed components are

created or modified

• at every build

• at each phase transition in the development

process

Open source
and component
reuse are here
to stay…

3

• when considering the contribution of a

component to an open source project or the

transfer of its ownership to another party

• before acquiring a significant ownership interest

in a software component

It is important to note that identifying problematic

licensing issues early in the

development cycle is tantamount to

detecting serious software defects:

the earlier a problem is detected,

the less expensive it is to fix. While

IP controls late in the development

cycle – during QA or release

assembly, for example – are better

than none, the earlier they happen

in the lifecycle, the better.

In the remainder of this report, we will outline several

Best Practices that facilitate the management of

software IP in the modern development organization.

While all of these Best Practices encourage a focus

on license compliance throughout the lifecycle,

each organization should adopt the subset of Best

Practices that meet their business needs. For example,

an organization may wish to give its developers

the flexibility to build prototypes using any open

source code with no pre-approval, but specify a

development phase transition beyond which all

externally developed components must be approved.

This provides the benefits of speed and efficiency to

the developer, with the protection offered by a formal

review.

It should be noted that, while all of these processes

can be built and executed manually, their adoption

and usage will be more effective and efficient when

supported with an automated software compliance

management system.

Preparing for IP Management

When beginning to adopt Best Practices, several

‘getting started’ tasks should be considered by the

individual or teams responsible for development and

licensing. An organization intent on managing its

software IP should identify the responsible business,

legal, and technical individuals who

will be involved in the process. The

organization also should designate

them as authorizers for each active

project, and commission them as

a group to oversee and manage

the planning, implementation,

and ongoing management of the

process.

A good first step for the team is to define the

boundary between internally developed and

externally developed components (e.g. for business

units, contractors, outsourcing organizations).

For example, a small organization that prefers

taking a conservative approach may deem all of the

code developed within its walls to be “internal”.

Conversely, that company would view as “external”

all software brought in from any outside source (e.g.

licensed proprietary, open source, contractors’ work

product, etc.).

A more trusting organization might extend its view

of “internal” software to include licensed proprietary

software and software developed by its contractor and

outsource partners. On the other hand, a department

of a large corporation may want to consider its

department “internal” and consider everyone else,

including other departments in the same company

to be “external.” Business judgment must be used to

determine where the boundary should lie.

The earlier
a problem is
detected, the
less expensive
it is to fix...

4

Another key task in the preparation process is for

the team to identify the development process phase

transitions at which component re-use reviews will

be conducted. The team also should define criteria

for designating an internally developed component

as sensitive (due to intellectual property value for

example embodiment of trade secrets or patents,

or risk), and develop and maintain a list of these

sensitive items.

The organization also should consider establishing

and maintaining lists of:

• Licenses that are prohibited by the organization

• Externally developed components that, based on

previous reviews, are approved for use in projects,

and the situations in which use is approved

• Internally developed components that, based on

previous reviews, are approved for contribution

to open source projects or disposition to third

parties

Once these lists have been created, the organization

can use them to conduct an initial assessment of its

existing code base(s). In this important preparatory

step, the organization identifies and establishes the

baseline pedigree, licenses, and components in use.

As with any process improvement, an acceptable

alternative approach involves introducing these steps

incrementally over time.

5

Seven Best Practices for Managing Software Intellectual Property

Whenever a development team considers adding new features or refining existing functionality in a project, it

should explicitly seek internally developed and externally developed components that could accelerate delivery.

The team should establish criteria for selecting and procuring these components. As would be expected, any

component under consideration that fails to meet functionality, performance, reliability, maturity, or risk

requirements should be eliminated.

The team should also eliminate any externally developed component whose license is on the prohibited license

list, whose license obligations are financially or legally incompatible with the project’s business objectives, or

that uses other external components or fragments whose licenses are similarly unacceptable. For example, an

organization developing a product that will be delivered under a proprietary license needs to be certain that

any open source or proprietary licensed code that is incorporated can be safely included without causing an

irreconcilable conflict between licenses. Any components that pass this initial test should be subjected to a

make-buy analysis to determine whether or not its acquisition makes sense from a business perspective.

To protect the organization’s critical intellectual property, the creation and modification of all internally

developed components should be tracked by recording a timestamp, the names of each author, and the

applicable objectives and constraints. If a newly-created or modified component is suspected to be sensitive

(e.g. a patent is sought, the code embodies algorithms that give the company significant competitive advantage,

etc.), the project’s legal, business, and technical reviewers should be convened. If these reviewers deem the

component to be sensitive, they should add it to the organization’s list of sensitive internal components.

By assessing sensitivity and license obligations at the point where a component is first being considered for

re-use, decisions can be based on verifiable facts, eliminating last-minute surprises, guesswork, compromises,

and risk-taking. This dramatically reduces the risk of schedule slippage, cost overruns, and damage to the

organization’s reputation. It also helps prevent the inappropriate re-use of critical intellectual property.

For each component that a project’s development team proposes to use within a project, the team should

understand:

������������������
��

������������������
��

6

������������������
���

• The intended use and rationale for inclusion

• The component’s sensitivity

• How the code will be incorporated

How the team deals with the component will depend, in part, on whether plans call for that component to be

used temporarily or permanently. For example, the intent may be to use that component for a limited amount

of time only to speed up prototyping or to advance the early phases of the development cycle, but not be

intended to be made a permanent part of the code base.

Another determination the team should make is whether a component will be used only as is, or if

modifications will be allowed, and if so, under which approvals.

Development teams should describe the method of joining that will be used to incorporate the component into

the project. This is an effective step because different types of joining can create different licensing obligations

(e.g., an unmodified copy will be used, a source code fragment will be copied and merged with other source

code, an executable will be packaged with the distribution, a statically linked library will be used, a dynamically

linked library will be used, etc.).

To achieve greater control over component re-use, teams should also take the following actions.

• Determine whether the component has been previously approved for the proposed form of use (by
consulting the approved externally developed components list).

• Declare the component’s version and understand its license obligations as well as those of any externally
developed components or fragments it contains or depends on. This requires a declaration from the
supplier of any externally developed component whose source code is unavailable for direct inspection.

• Understand all potential incompatibilities between the component’s license obligations and the license
obligations of other externally developed components included in this project.

• Present the above information to the project’s legal, technical, and business authorizers and request

approval to use the component as described.

Approvals should be reflected in the appropriate organization-wide lists.

• If the component is internal and sensitive, the list that covers these items should be updated to note that
component’s inclusion in this project.

• If the component is externally developed, its metadata and approval details (origin, version, license, license
obligations, permitted forms of use, permitted projects, approvers, approval date) should be recorded in the
list of approved external components.

7

Inspecting the code base on a regular basis decreases the likelihood that unexpected components will be

introduced without being noticed. Therefore, at the creation of each project build or at release assembly, the

development team should verify that:

• No unapproved sensitive internally or externally developed components or fragments have been added to
the project

• No unapproved changes have been made to sensitive internally developed components

• No changes have been made to externally developed components whose form of use precludes changes, or
requires that all changes be approved.

Any inappropriate additions or changes discovered during verification should be immediately addressed,

either by obtaining approval from the project’s legal, technical, and business reviewers, or by backing out the

offending modification. The root cause of any component misuse should be identified and corrected to ensure

no subsequent regression.

By promptly and diligently assessing every build and release, the development team will be able to detect

errors when they are least expensive to correct. At the completion of each build or release, the key metadata

for all externally developed components should be recorded in the associated bill-of-materials. This enables

demonstrable compliance with license obligations, and eliminates any uncertainty caused by changes between

project releases by providing a clear audit trail.

As a project completes a major development process phase, its legal, technical, and business reviewers should do

the following.

• Verify that no unapproved sensitive internal or external components or fragments are used in the project.

• Verify that no unapproved changes were made to sensitive internal components, and that no unapproved or
precluded changes were made to external components.

• Review the license obligations of all external components used in the project, and ensure compliance with
these obligations.

These phase reviews backstop the development team, and keep the legal, technical, and business reviewers

engaged in the management of software re-use. They also verify that changes in the project’s objectives have not

created legal, technical, or financial inconsistencies with the licenses of components used in the project.

������������������
������������������������������

������������������
��

8

The rationale for contributing components to an open source project is beyond the scope of this report, as are

the considerations involved in transferring ownership to a third party or creating a new open source project.

However, if a contribution or transfer of a candidate component or fragment is deemed appropriate, the

project’s legal and business reviewers should

• determine whether the candidate component’s sensitivity (if internally developed) is an impediment to
contribution or transfer

• verify the right to contribute or transfer every externally developed component or fragment contained

within the candidate

This helps to ensure that the organization does not inadvertently contribute code that shouldn’t be contributed

because of its sensitivity or because the organization is not entitled to contribute it.

If an organization is considering an acquisition that would include a significant interest in one or more software

components, the designated set of legal, technical, and business reviewers should be charged with the following.

• Identifying all included components not owned by the supplier or target.

• Assessing their license obligations with respect to the acquiror’s compliance, business objectives, and legal
policies.

• Assessing the impact of any required rework or change on cost, revenue, and quality.

Note that this best practice applies to a variety of situations in which financial investments are involved. Such

situations include: company mergers and acquisitions, product acquisitions, joint venture formations, venture

capital investments, etc.

9

������������������
���

������������������
��

Conclusion

In summary, this report describes a set of seven

best practices whose objective is to encourage

development based on component re-use and

software assembly. By integrating these practices in

its development processes, organizations will have

far greater assurances of compliance with all relevant

license obligations and far more effective protection

of software intellectual property.

Adopting these practices will enable companies to be

more aggressive in their use of the software assembly

approach. That, in turn, will enable those companies

to more quickly gain the benefits and competitive

advantage this new development approach promises

– including accelerated project timelines, improved

software quality, and reduced development costs.

We are interested in your feedback and comments on

this paper. Please send them to:

 bestpractices@blackducksoftware.com.

10

About Black Duck Software

Black Duck Software™ is the leading provider of

software compliance management solutions that help

companies govern how software assets are created,

managed, and licensed. Black Duck’s protexIP™

suite of offerings helps businesses take maximum

advantage of open source software while at the same

time assure they satisfy the obligations associated

with the code they use. Black Duck’s customer base

includes enterprises, product developers, outsourcers,

law firms and other organizations worldwide that are

concerned with protection of software intellectual

property. For more information about Black Duck,

visit www.blackducksoftware.com.

Contact

To learn more about how Black Duck Software

can help your company manage license compliance

and gain competitive advantages in software

development, please contact sales@blackducksoftw

are.com or call +1.781.891.5100 x450. Additional

information is available at Black Duck’s website at:

www.blackducksoftware.com

© 2005 Black Duck Software, Inc.
protexIP, and Sorting Out Software IP are
trademarks of Black Duck Software, Inc. All other
trademarks are property of their respective holders.

